Source code for biocutils.combine_rows
from functools import singledispatch
from typing import Any
from warnings import warn
import numpy
from ._utils_combine import (
_check_array_dimensions,
_coerce_sparse_array,
_coerce_sparse_matrix,
)
from .convert_to_dense import convert_to_dense
from .is_list_of_type import is_list_of_type
from .package_utils import is_package_installed
__author__ = "jkanche"
__copyright__ = "jkanche"
__license__ = "MIT"
[docs]
@singledispatch
def combine_rows(*x: Any) -> Any:
"""Combine n-dimensional objects along their first dimension.
If all elements are :py:class:`~numpy.ndarray`, we combine them using
numpy's :py:func:`~numpy.concatenate`.
If all elements are either :py:class:`~scipy.sparse.spmatrix` or
:py:class:`~scipy.sparse.sparray`, these objects are combined using scipy's
:py:class:`~scipy.sparse.vstack`.
If all elements are :py:class:`~pandas.DataFrame` objects, they are
combined using :py:func:`~pandas.concat` along the first axis.
Args:
x:
One or more n-dimensional objects to combine. All elements of x
are expected to be the same class.
Returns:
Combined object, typically the same type as the first entry of ``x``.
"""
raise NotImplementedError("no `combine_rows` method implemented for '" + type(x[0]).__name__ + "' objects")
@combine_rows.register(numpy.ndarray)
def _combine_rows_dense_arrays(*x: numpy.ndarray):
_check_array_dimensions(x, active=0)
x = [convert_to_dense(y) for y in x]
for y in x:
if numpy.ma.is_masked(y):
return numpy.ma.concatenate(x)
return numpy.concatenate(x)
if is_package_installed("scipy"):
import scipy.sparse as sp
def _combine_rows_sparse_matrices(*x):
_check_array_dimensions(x, 0)
if is_list_of_type(x, sp.spmatrix):
combined = sp.vstack(x)
return _coerce_sparse_matrix(x[0], combined, sp)
warn("not all elements are SciPy sparse matrices")
x = [convert_to_dense(y) for y in x]
return numpy.concatenate(x)
try:
combine_rows.register(sp.spmatrix, _combine_rows_sparse_matrices)
except Exception:
pass
def _combine_rows_sparse_arrays(*x):
_check_array_dimensions(x, 0)
if is_list_of_type(x, sp.sparray):
combined = sp.vstack(x)
return _coerce_sparse_array(x[0], combined, sp)
warn("not all elements are SciPy sparse arrays")
x = [convert_to_dense(y) for y in x]
return numpy.concatenate(x)
try:
combine_rows.register(sp.sparray, _combine_rows_sparse_arrays)
except Exception:
pass
if is_package_installed("pandas"):
from pandas import DataFrame, concat
@combine_rows.register(DataFrame)
def _combine_rows_pandas_dataframe(*x):
return concat(x, axis=0)