Source code for hdf5array.Hdf5DenseArraySeed

from typing import Optional, Sequence, Tuple

import numpy
from delayedarray import (
    DelayedArray,
    chunk_grid,
    chunk_shape_to_grid,
    extract_dense_array,
    is_masked,
    wrap,
)
from h5py import File
from numpy import asfortranarray, dtype, ix_

__author__ = "LTLA"
__copyright__ = "LTLA"
__license__ = "MIT"


[docs] class Hdf5DenseArraySeed: """HDF5-backed dataset as a ``DelayedArray`` dense array seed.""" def __init__( self, path: str, name: str, dtype: Optional[dtype] = None, native_order: bool = False, ) -> None: """ Args: path: Path to the HDF5 file. name: Name of the dataset containing the array. dtype: NumPy type of the data. Defaults to the HDF5 type on disk; otherwise, values are transformed to ``dtype`` during extraction. native_order: Whether to use HDF5's native order of dimensions. HDF5 orders dimensions by slowest to fastest changing. If ``native`` is True, the same ordering is used for this array, i.e., this array's shape is the same as that reported in the file, equivalent to C storage order. If False, this array's shape is reversed compared to that reported in the file, equivalent to Fortran storage order. In this case, the first dimension in this array will be the fastest changing one, etc. """ self._path = path self._name = name self._native_order = native_order with File(self._path, "r") as handle: dset = handle[name] self._modify_dtype = dtype is not None and dtype != dset.dtype if not self._modify_dtype: dtype = dset.dtype self._dtype = dtype if native_order: self._shape = dset.shape else: self._shape = (*list(reversed(dset.shape)),) if dset.chunks is not None: if native_order: self._chunks = dset.chunks else: self._chunks = (*list(reversed(dset.chunks)),) else: chunk_sizes = [1] * len(self._shape) if native_order: chunk_sizes[-1] = self._shape[-1] else: chunk_sizes[0] = self._shape[0] self._chunks = (*chunk_sizes,) @property def dtype(self) -> dtype: """ Returns: NumPy type of this array. """ return self._dtype @property def shape(self) -> Tuple[int, ...]: """ Returns: Tuple containing the dimensions of this array. """ return self._shape @property def path(self) -> str: """ Returns: Path to the HDF5 file. """ return self._path @property def name(self) -> str: """ Returns: Name of the dataset inside the file. """ return self._name
[docs] @chunk_grid.register def chunk_grid_Hdf5DenseArraySeed(x: Hdf5DenseArraySeed): """See :py:meth:`~delayedarray.chunk_grid.chunk_grid`. The cost factor is set to 20 to reflect the computational work involved in extracting data from disk. """ return chunk_shape_to_grid(x._chunks, x._shape, cost_factor=20)
[docs] @extract_dense_array.register def extract_dense_array_Hdf5DenseArraySeed( x: Hdf5DenseArraySeed, subset: Tuple[Sequence[int], ...] ) -> numpy.ndarray: """See :py:meth:`~delayedarray.extract_dense_array.extract_dense_array`.""" converted = [] num_lists = 0 for s in subset: if isinstance(s, range): # convert back to slice for HDF5 access efficiency. converted.append(slice(s.start, s.stop, s.step)) else: num_lists += 1 converted.append(s) # Currently h5py doesn't support indexing with multiple lists at once. # So let's convert all but one of the highest-density entries to slices. reextract = None if num_lists > 1: lowest_density = 1 chosen = 0 for i, s in enumerate(converted): if not isinstance(s, slice) and len(s): lowest = s[1] highest = s[-1] current_density = (highest - lowest) / len(s) if lowest_density > current_density: lowest_density = current_density chosen = i reextract = [] for i, s in enumerate(converted): if isinstance(s, slice) or i == chosen: reextract.append(range(len(subset[i]))) else: lowest = s[0] highest = s[-1] converted[i] = slice(lowest, highest + 1) reextract.append([j - lowest for j in s]) # Re-opening the handle as needed, so as to avoid # blocking other applications that need this file. with File(x._path, "r") as handle: dset = handle[x._name] if x._native_order: out = dset[(*converted,)] else: converted.reverse() out = dset[(*converted,)].T if reextract is not None: out = out[ix_(*reextract)] # Making other transformations for consistency. if x._modify_dtype: out = out.astype(x._dtype, copy=False) if not out.flags.f_contiguous: out = asfortranarray(out) return out
[docs] class Hdf5DenseArray(DelayedArray): """HDF5-backed dataset as a ``DelayedArray`` dense array. This subclass allows developers to implement custom methods for HDF5-backed arrays. """ def __init__(self, path: str, name: str, **kwargs): """To construct a ``Hdf5DenseArray`` from an existing :py:class:`~Hdf5DenseArraySeed`, use :py:meth:`~delayedarray.wrap.wrap` instead. Args: path: Path to the HDF5 file. name: Name of the dataset containing the array. kwargs: Further arguments to pass to the :py:class:`~Hdf5DenseArraySeed` constructor. """ if isinstance(path, Hdf5DenseArraySeed): seed = path else: seed = Hdf5DenseArraySeed(path, name, **kwargs) super(Hdf5DenseArray, self).__init__(seed) @property def path(self) -> str: """ Returns: Path to the HDF5 file. """ return self.seed.path @property def name(self) -> str: """ Returns: Name of the dataset inside the file. """ return self.seed.name
[docs] @wrap.register def wrap_Hdf5DenseArraySeed(x: Hdf5DenseArraySeed): """See :py:meth:`~delayedarray.wrap.wrap`.""" return Hdf5DenseArray(x, None)
[docs] @is_masked.register def is_masked_Hdf5DenseArraySeed(x: Hdf5DenseArraySeed) -> bool: """See :py:meth:`~delayedarray.is_masked.is_masked`.""" return False