EnsemblDb¶
EnsemblDb provides a Python interface to Ensembl Annotation Databases (EnsDb). It mirrors the functionality of the Bioconductor ensembldb package, allowing users to efficiently query gene, transcript, and exon annotations from SQLite-based annotation files.
This package is part of the BiocPy ecosystem and integrates seamlessly with GenomicRanges.
Install¶
To get started, install the package from PyPI
pip install ensembldb
Usage¶
1. Connecting to an EnsDb¶
You can manage and download standard Ensembl databases via the registry (backed by AnnotationHub).
from ensembldb import EnsDbRegistry
# Initialize the registry
registry = EnsDbRegistry()
# List available databases
available = registry.list_ensdbs()
print(available[:5])
# ['AH53211', 'AH53212', ...]
# Load a specific database (e.g., Larimichthys crocea)
# This automatically downloads and caches the SQLite file
db = registry.load_db("AH113677")
# View metadata
print(db.metadata)
2. Retrieving Genomic Features¶
EnsemblDb allows you to extract features as GenomicRanges objects.
Fetch Genes¶
genes = db.genes()
print(genes)
# GenomicRanges with 23958 ranges and 3 metadata columns
# seqnames ranges strand gene_id gene_name gene_biotype
# <str> <IRanges> <ndarray[int8]> <list> <list> <list>
# ENSLCRG00005000002 MT 1 - 69 + | ENSLCRG00005000002 Mt_tRNA
# ENSLCRG00005000003 MT 70 - 1016 + | ENSLCRG00005000003 Mt_rRNA
# ENSLCRG00005000004 MT 1017 - 1087 + | ENSLCRG00005000004 Mt_tRNA
# ... ... ... | ... ... ...
# ENSLCRG00005023957 VI 22289079 - 22304889 - | ENSLCRG00005023957 FILIP1 protein_coding
# ENSLCRG00005023958 VI 22328118 - 22347657 + | ENSLCRG00005023958 SENP6 protein_coding
# ENSLCRG00005023959 VI 22351962 - 22451867 + | ENSLCRG00005023959 myo6a protein_coding
# ------
# seqinfo(496 sequences): I II III ... XXII XXIII XXIV
Fetch Transcripts and Exons¶
transcripts = db.transcripts()
print(transcripts)
exons = db.exons()
print(exons)
3. Filtering¶
You can filter results using a dictionary passed to the filter argument. Keys should match column names in the database (e.g., gene_id, gene_name, tx_biotype).
Filter by Gene Name¶
# Get coordinates for a specific gene
senp6 = db.genes(filter={"gene_name": "SENP6"})
print(senp6)
Filter by ID list¶
# Get transcripts for a list of gene IDs
ids = ["ENSLCRG00005023958", "ENSLCRG00005000003"]
txs = db.transcripts(filter={"gene_id": ids})
print(txs)
Filter Exons by Transcript ID:¶
# Get all exons associated with a specific transcript
tx_exons = db.exons(filter={"tx_id": "ENSLCRT00005000003"})
print(tx_exons)
4. Direct SQL Access¶
If you need more complex queries not covered by the standard methods, you can execute SQL directly against the underlying database.
# Get a BiocFrame from a raw SQL query
df = db._query_as_biocframe("SELECT * FROM gene LIMIT 5")
print(df)
Note¶
This project has been set up using BiocSetup and PyScaffold.