from typing import Any, Dict, List, Optional
from warnings import warn
import biocframe
import biocutils as ut
from genomicranges import GenomicRanges
from ._combineutils import (
check_assays_are_equal,
merge_assays,
merge_se_colnames,
merge_se_rownames,
relaxed_merge_assays,
)
from .BaseSE import BaseSE
__author__ = "jkanche"
__copyright__ = "jkanche"
__license__ = "MIT"
[docs]
class SummarizedExperiment(BaseSE):
"""Container to represents genomic experiment data (`assays`), features (`row_data`), sample data (`column_data`)
and any other `metadata`.
SummarizedExperiment follows the R/Bioconductor specification; rows are features, columns are samples.
"""
[docs]
def __init__(
self,
assays: Dict[str, Any] = None,
row_data: Optional[biocframe.BiocFrame] = None,
column_data: Optional[biocframe.BiocFrame] = None,
row_names: Optional[List[str]] = None,
column_names: Optional[List[str]] = None,
metadata: Optional[dict] = None,
validate: bool = True,
) -> None:
"""Initialize a Summarized Experiment (SE).
Args:
assays:
A dictionary containing matrices, with assay names as keys
and 2-dimensional matrices represented as either
:py:class:`~numpy.ndarray` or :py:class:`~scipy.sparse.spmatrix`.
Alternatively, you may use any 2-dimensional matrix that has
the ``shape`` property and implements the slice operation
using the ``__getitem__`` dunder method.
All matrices in assays must be 2-dimensional and have the
same shape (number of rows, number of columns).
row_data:
Features, must be the same length as the number of rows of
the matrices in assays.
Feature information is coerced to a
:py:class:`~biocframe.BiocFrame.BiocFrame`. Defaults to None.
column_data:
Sample data, must be the same length as the number of
columns of the matrices in assays.
Sample information is coerced to a
:py:class:`~biocframe.BiocFrame.BiocFrame`. Defaults to None.
row_names:
A list of strings, same as the number of rows.
If ``row_names`` are not provided, these are inferred from
``row_data``.
Defaults to None.
column_names:
A list of string, same as the number of columns.
if ``column_names`` are not provided, these are inferred from
``column_data``.
Defaults to None.
metadata:
Additional experimental metadata describing the methods.
Defaults to None.
validate:
Internal use only.
"""
if isinstance(row_data, GenomicRanges):
warn("`row_data` is `GenomicRanges`, consider using `RangeSummarizedExperiment`.")
super().__init__(
assays,
row_data=row_data,
column_data=column_data,
row_names=row_names,
column_names=column_names,
metadata=metadata,
validate=validate,
)
############################
######>> combine ops <<#####
############################
[docs]
def relaxed_combine_rows(self, *other) -> "SummarizedExperiment":
"""Wrapper around :py:func:`~relaxed_combine_rows`."""
return relaxed_combine_rows(self, *other)
[docs]
def relaxed_combine_columns(self, *other) -> "SummarizedExperiment":
"""Wrapper around :py:func:`~relaxed_combine_columns`."""
return relaxed_combine_columns(self, *other)
[docs]
def combine_rows(self, *other) -> "SummarizedExperiment":
"""Wrapper around :py:func:`~combine_rows`."""
return combine_rows(self, *other)
[docs]
def combine_columns(self, *other) -> "SummarizedExperiment":
"""Wrapper around :py:func:`~combine_columns`."""
return combine_columns(self, *other)
############################
######>> combine ops <<#####
############################
[docs]
@ut.combine_rows.register(SummarizedExperiment)
def combine_rows(*x: SummarizedExperiment) -> SummarizedExperiment:
"""Combine multiple ``SummarizedExperiment`` objects by row.
All assays must contain the same assay names. If you need a
flexible combine operation, checkout :py:func:`~relaxed_combine_rows`.
Returns:
A combined ``SummarizedExperiment``.
"""
first = x[0]
_all_assays = [y.assays for y in x]
check_assays_are_equal(_all_assays)
_new_assays = merge_assays(_all_assays, by="row")
_all_rows = [y._rows for y in x]
_new_rows = ut.combine_rows(*_all_rows)
_new_row_names = merge_se_rownames(x)
current_class_const = type(first)
return current_class_const(
assays=_new_assays,
row_data=_new_rows,
column_data=first._cols,
row_names=_new_row_names,
column_names=first._column_names,
metadata=first._metadata,
)
[docs]
@ut.combine_columns.register(SummarizedExperiment)
def combine_columns(*x: SummarizedExperiment) -> SummarizedExperiment:
"""Combine multiple ``SummarizedExperiment`` objects by column.
All assays must contain the same assay names. If you need a
flexible combine operation, checkout :py:func:`~relaxed_combine_columns`.
Returns:
A combined ``SummarizedExperiment``.
"""
first = x[0]
_all_assays = [y.assays for y in x]
check_assays_are_equal(_all_assays)
_new_assays = merge_assays(_all_assays, by="column")
_all_cols = [y._cols for y in x]
_new_cols = ut.combine_rows(*_all_cols)
_new_col_names = merge_se_colnames(x)
current_class_const = type(first)
return current_class_const(
assays=_new_assays,
row_data=first._rows,
column_data=_new_cols,
row_names=first._row_names,
column_names=_new_col_names,
metadata=first._metadata,
)
[docs]
@ut.relaxed_combine_rows.register(SummarizedExperiment)
def relaxed_combine_rows(*x: SummarizedExperiment) -> SummarizedExperiment:
"""A relaxed version of the :py:func:`~biocutils.combine_rows.combine_rows` method for
:py:class:`~SummarizedExperiment` objects. Whereas ``combine_rows`` expects that all objects have the same columns,
``relaxed_combine_rows`` allows for different columns. Absent columns in any object are filled in with appropriate
placeholder values before combining.
Args:
x:
One or more ``SummarizedExperiment`` objects, possibly with differences in the
number and identity of their columns.
Returns:
A ``SummarizedExperiment`` that combines all ``experiments`` along their rows and contains
the union of all columns. Columns absent in any ``x`` are filled in
with placeholders consisting of Nones or masked NumPy values.
"""
first = x[0]
_new_assays = relaxed_merge_assays(x, by="row")
_all_rows = [y._rows for y in x]
_new_rows = biocframe.relaxed_combine_rows(*_all_rows)
_new_row_names = merge_se_rownames(x)
current_class_const = type(first)
return current_class_const(
assays=_new_assays,
row_data=_new_rows,
column_data=first._cols,
row_names=_new_row_names,
column_names=first._column_names,
metadata=first._metadata,
)
[docs]
@ut.relaxed_combine_columns.register(SummarizedExperiment)
def relaxed_combine_columns(*x: SummarizedExperiment) -> SummarizedExperiment:
"""A relaxed version of the :py:func:`~biocutils.combine_rows.combine_columns` method for
:py:class:`~SummarizedExperiment` objects. Whereas ``combine_columns`` expects that all objects have the same rows,
``relaxed_combine_columns`` allows for different rows. Absent columns in any object are filled in with appropriate
placeholder values before combining.
Args:
x:
One or more ``SummarizedExperiment`` objects, possibly with differences in the
number and identity of their rows.
Returns:
A ``SummarizedExperiment`` that combines all ``experiments`` along their columns and contains
the union of all rows. Rows absent in any ``x`` are filled in
with placeholders consisting of Nones or masked NumPy values.
"""
first = x[0]
_new_assays = relaxed_merge_assays(x, by="column")
_all_cols = [y._cols for y in x]
_new_cols = biocframe.relaxed_combine_rows(*_all_cols)
_new_col_names = merge_se_colnames(x)
current_class_const = type(first)
return current_class_const(
assays=_new_assays,
row_data=first._rows,
column_data=_new_cols,
row_names=first._row_names,
column_names=_new_col_names,
metadata=first._metadata,
)
@ut.extract_row_names.register(SummarizedExperiment)
def _rownames_se(x: SummarizedExperiment):
return x.get_row_names()
@ut.extract_column_names.register(SummarizedExperiment)
def _colnames_se(x: SummarizedExperiment):
return x.get_column_names()